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Interaction of the Solar Wind with the Moon

by
Antonio Alfonso-Faus and P, J, Kellogg

Abstract

The problem of the interaction of the solar wind with the moon is
attacked from a kinetic-theory point of view, The boundary conditions
are the total absorption of the solar-wind particles by the moon's
surface and the magnetic transparency of the lunar body; these conditions
imply the absence of an up-stream shock wave.

The analytical treatment of the ion component gives the gross features
of the structure of the interaction, The main feature is the presence of
an empty cavity of conical shape, that has the length of a few tens of
moon radii and is approximately given by the ratio of the solar wind
velocity and the product of the ion thermal velocity times the sine of
the angle between the interplanetary magnetic field and the velocity
of the solar wind, This angle does not strongly affect the orientation
of the cavity which is parallel to the solar wind velocity relative to the
moon’s frame, The disturbance in plasma density and flux occurs almost
entirely inside the cylinder tangential to the moon and parallel to the
bulk velocity of the plasma., This cavity has been observed by the
satellite Explorer 35,

Two important effects are found due to electron pressure; a) shartening
of the length of the wake and b) weakening of the gradients of density
across the boundary. The two effects are analyzed separately and an
effective temperature for the ions is defined in order to take into

account the presence of the electrons,



The drop in density across the boundary of the. cavity produces a
system of currents that increases the magnetic field strength inside the
cavity, The problem is idealized by considering that the drop occurs within
a lLarmor distance; in this way one arrives at a situation similar to the
problem of a solenoid, The present observations show the increase in the
magnetic field strength inside the cavity, They also show a decrease
across the boundary and an increase just outside the cavity; further
refinements to the theory may explain these cbservations, or they may
be the result of a contribution from a weak magnetic field, intrinsic

to the moon, that has been distorted by the solar wind,

*'I‘his work has been supported by the National Aeronautics and Space
Administration under Contract NsG-281-62.

One of the authors (A.A-F.) submitted this work in partial fulfillment
of the Ph.D. requirements of the University of Minnesota.



1. Introduction

The purpose of this work is a theoretical treatment of the interaction
of the solar wind with the moon. Either no intrinsic'magnetic field, or
a very low one, is present in the moon (Sonett et al., 1967; Ness et al.,
1967) . Hence, the solar-wind particles are free to directly hit the
surface, and we will consider that these particles are absorbed and/
or neutralized, so that they became disconnected from the plasma.

Since the solar wind is a magnetized plasma, the average electrical
conductivity of the moon is also decisive in determining the nature of
the interaction. Gold (1966) considered the conductivity high enough
to have a piling up of magnetic field li.nés, and the subsequent formation
of a lunar magnetosphere and shock wave. We take the opposite case of
low electrical conductivity, }or canplete transparency of the moon to
the magnetic field, as the experimental results from Explorer 35
indicate (Ness et al., 1967).

The solar wind is camposed mainly of protons and electrons that
arrive at 1 a.u. with a bulk velocity, more or less radially from the sun,
which is much higher than the ion thermal speed and much lower than the
electron thermal speed. We will take full advantage of these properties
that give the order of importance of the different mechanismsat play.

We shall first consider the ions aloﬁe, since they carry most of the
inertia of the stream, and we will use the guiding-center approach.
Recently, Whang (1967), has presented a numerical solution based upon
similar considerations; the results from our analytical expressions

are in canéleté agreement with this author's work.



After this, we include the electron component and its interaction
with the ions. We prove that this effect is of the same order of magnitude
as the ion-pressure effect, as far as the closing of .the wake is
concerned, Furthermore, the gradient of ion density across the boundary
is strongly affected by the presence of the electron ccmponex.lt. Finally,
we analyze the effect of the surface currents and the resultant
distortion of the magnetic field. Recently Whang (1968) has considered
the same problem; again, there is agreement between his nmumerical solution
and our results.

Michel (1967 and 1968) presents a hydrodynamié ahaiog as a solution
i to the problem, ignoring the detailed structure of the plasma. We take
a kinetic-theory approach that allows us to treat what is present
in the solar wind: ions, electrons, electric and magnetic fields.

2. Cold Plasma Approximation

Our first approach is to neglect the ion thermal motions. Under
this simplification, the streaming magnetized plasma is composed of a
parallel stream of cold ions embedded in a cloud of thermal electrons.

Since the moon is considered here as a perfect absorber, its presence
produces an empty space in the stream; reversing the motion, i.e.
considering the plasma at rest and the moon moving through it at the
solar wind velocity, the moon is sweeping the ions and electrons and
therefore leaving a cylindrical empty cavity that is parallel to its
velocity. Since the electrons are thermal, they tend to get inside the
empty cavity and, at the same time, they are held back by the ion's
attracti'on‘ that preserves the quasi-neutrality of the plasma; the ions
are under this electron pressure that reduces the size of the cylindrical

cav:.tyg i.e. it is modified to a conlcal shape. Due to this effect,



the straight line path of the ions will get slightly curved towards

the interior of the cylinder. The thermal electrons, trying to get inside
the empty cylinder, will produce scme charge separation which in turn
will be the source of the electric fields that hold them back.

3. Ion Distribution

In order to get the ion distribution function we use the following
assumptions:

a) Far from the moon the distribution function is Maxwellian; this
is then one of the boundary conditions for the solution of Boltzmamn's
equation.

b) The surface of the moon acts as a perfect sink for the ions that
happen to strike it; this completes the boundary conditions required to
specify the solution. The assumption implies that, in the vicinity of
the moon, not all the states of the particles in phase-space are present;
a state is missing if the motion of the particle under time reversal
happens to be along a trajectory that intersects the moon's surface.

¢) Since the mean free path of the particles in the solar wind is
of the order of 1 a.u. at the earth's orbit, we consider the plasma in a
collisionless state. This makes tractable the problem of finding the
analytical expressions for the trajectory of each particle in the magnetic
plasma.

d) The ions move under the effect of the following forces:

GM« M
gravitational = 2.6 x 1072

R

2 dynes

~ N



electric —};—-’I—' = 8x1020 dynes
{
%5 18

magnetic <~ ——=——= 4x 10 ° dynes

Q

where we have used T = lO5 oK, andv’L

velocity perpendicular to the magnetic field lines. It is seen that the

is the component of the thermal

magnetic forces dominate the ion motion; hence, the trajectories are spirals
along the magnetic field lines.

If the‘ electric potential, which is of the order of some kT/e,
varies considerably over distances much shorter than the moon's radius,
then the electric forces dominate the ion motion. This is the case for
a small region near the back of the moon, as shown later.

From the above assumptions it will be seen that we already have the
solution to the collisionless Boltzmann's equation. At a point far
from the moon the distribution is Maxwellian. Near the moon the
distribution is Maxwellian, except that not all states of the velocity
are present. The problem reduces to find these missing states at each
particular point.

Figure 1 presents the frame of reference, its origin at the moon's
center, x parallel to the magnetic lines, y perpendicular to x in the
plane of the magnetic lines and the solar-wind velocity Vo, and z normal
to this plane. The velocity Fp of an arbitrary particle p is given
by??p:-??o-%-;; + v mere\-?oismesolarxﬁndvelocitythatmakes

(1 I N
an angle o with the magnetic field lines, v

\\

thermal velocity of the ions along the B lines and ;;,.L its projection

into a plane perpendicular to the B lines; this projection gives a circling

is the projection of the

motion whose phase angle is specified by .



Projecting ?;p along the coordinate axes one gets:

-

= _
V=g = VoGO8 a+V

I

v=—-y-=V°sina+v‘Lsinxp (1)

- dz _
v, g =V, s ¥

Using the explicit time dependence fory = "’o + w t where w is the ion
cyclotron frequency eBo/Mc, Yo the initial phase angle, and noting that
Vo, v“ ¢ Yy and Q’o are constant, we integrate the equations in (1) to
obtain the trajéctory:
x=x + (Vocosa-!-v”) t
v

y=yo+votsina——u-)-+~ [cos (q;o.+wt)—cos¢o] (2)

zZ=3z +‘-’-J=; [sin(y_ + wt) - sin ¢ ]
o w o o

wherexo,, yoandzoarethecoordinatesoftheionattﬁnet=0, A
state is missing at the point Xor Yor Zgr if the motion of the ion fram
t=0to t =~ = is along a trajectory that intersects the moon's surface;
thus, the missing statgs are given by those values of Vi V. and ‘bc

such that

x2+y2+22=Rf£

Since the ion Larmor's radius Li =V /w is much smaller than the

for same t < 0 (3)

moon's radius, we may average out the circling motion of the ions and

consider the trajectory of their guiding center. 1In this way the



system (2) reduces to

x=xo+(vocosa+v”)t
y=yo+VotS:anL (4)

zZ = 2
(e

From the third expression in (4) it is seen that in the guiding center
approach the ion motions are constrained to be in planes z = constant;
therefore, the presence of the moon affects only the region between

the two parallel planes, perpendicular to the z axes, z = + R, . Hence,

¢
the three-dimensional problem reduces to a two-dimensional one.
Calling R = (R‘% - 2.9, vhich is the radius of the circle intersected

by the plane z = z, and the lunar sphere, condition (3) is now given by

x2+y2=R2 for scme t < 0 (5)

x=xo+ (VOOOSU.“I’V”) t
(6)
y=yo+Votsin a

are the equations of the two-dimensional trajectory in the plane z = z o
From (6) it is seen that the only thermal contribution that comes
in is the component Vi ¥ thus, the missing states are givén by a cut

in velocity space along the v” axis. The problem reduces to finding the

2 2 2

values cfvﬁ for which there exist a t < 0 such that x” + y~ = R",

f
Substituting x and v fram (6) into (5) and solving for t one gets:

~b+ ® - 4 ac)V/?

2a

t =

(7



where
v 2 ,
a-—VO +Vﬁ +2Vov“cosa
b=2Voxocosu+2Voyo sma+2xov” (8)
_ .2 2 _ .2
c =X, +y0 R

The missing states are given by the values of vl i such that t is real

and < 0, i.e.:

- 4ac > 0 (9)

b >0 (10)

since the a that appears in the denominator of (7) is always >0. Hence, the
bounds of the forbidden range of v” are given by the roots of the equations:

2

b™ - dac =0 (11)
and

b=20 (12)

Solving for v” , we get two bounds fram (11) and one fram (12):

XY, sina + (Rz—yoz)ws o+ (xoz + Y02 - Rz)l/z R sin o
Vv = (12a)

o 2 _ g
Yo
X cosa+y, sina

-y, =2 ° (12b)




Since the two conditions (9) and (10} have to be satisfied simultaneocusly,
one has to combine the bounds (12a) and (12b) to get the absolute bounds
of vu . We call the two roots in (12a) vy and v, (vl < vz), and obtain
the following four regions, sketched in Figure 2, that are bounded by

the two parallel planes normal to the z axis, zo=j:R

(( :

a) outside the cylinder parallel to B:
Region I, vy < -R ¢ no missing states; the presence of the moon
is not felt in this region.

Region II, Yo > R q , missing states given by

Vl <V” < Vz

b) inside the cylinder parallel to B:

ion III, X, < 0, missing states given by

-® <YV <

nooL

ion IV, x> 0, missing states given by
o) : -

V. €V < @
2

]

In the special case o = 0, meaning that the magnetic field lines
are parallel to the solar wind velocity, one gets fram (12a) vy = Vy = =V
so that region II (Figure 2) has no missing states, an obvious results
since by symmetry the regions I and II are identical in this particular
case. The disturbed region is confined to the interior of the cylinder,
and we get back the wake obtained in the cold plasma approach. In this
case the cylindrical wake is modified by electron pressure alone;
the thermal motions of the ions do not contribute anything to the cold
plasma approach, except for surface currents at the boundary of the wake.



The signs of the relevant bounds are presented in Figure 2, One
of the roots (12a) vanishes when crossing the cylindrical wake of the
cold plasma approach; for example, along ab and ed vy = 0, while
'alongbcandfevzsoo By tracing the roots in Figure 2 we can make
general statements regarding the geometry of the curves of constant
density: referring the density n to the unperturbed density n 7 the
straight lines ab and fe are always part of the curve of constant
density 0.5; all the curves of density é 005«are always located inside
the cold plasma wake, cylinder acfd, while the exterior of this cylinder
contains all the curves of density > 0.5. Thus, 50% of the constant
density curves are located inside the cold plasma wake. The locus
of points at which the two roots (12a) are equal in absolute value
but opposite in sign is given by:

Xytana —y> + B = 0 (13)

which is a hyperbola and corresponds to curve og in Figure 2. Above
and below this curve, the average velocity is given by ’\"fo plus the
contribution fram the thermal motions along the magnetic field lines
which give an average velocity inclined toward the central part of the
wake. The points on og have average velocity exactly equal to ?70,
since the thermal contribution is symmetric there. Since the width
of the cuts in welocity space (along the v“ axis) is broader than

the thermal speeds, the possibility of the two stream instability is there.
The growth rate of this instability is of the order of the plasma
frequency, i.e., proportional to the square root of the density, and
since the density is increasing away from the moon, the growth rate
becomes high enough for the instability to exist. This instability
would thermalize the particles in the plasma causing it to behave more
like a fluid.
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4, ILength of the Wake

The remarks made in the last section on the density distribution
are also valid for the flux distribution, since the thermal velocity
of the ions is much smaller than Vi this means that the curves of
constant density are also curves of constant flux, to a good approximation.
The remarks are general in the sense that they do not depend on the
particular values of the solar wind parameters (density, temperature,
velocity and magnetic field strength). To get a quantitative picture
of the distribution of densities and fluxes, we need the numerical values
along the axis of the wake y = x tan o which give a measure of its length.
In order to do that, we first express the roots (1l2a) in terms of the

coordinates r, A of figure 7:

v —rAsina+(R2—k2) c:oseni

°© r2 sinza + )‘2 cosza + 2r) sin a cos a --R2

2_2)1/2

2 .
(r“+x R sin o (14)

The density at a particular point is given by the difference between
the unperturbed density ng and the integral of the distribution function
over the forbidden interval at that point:

p Vv

2
v 2
n 1 th =% ax
2 =31~ (15)
no 1:172
1
P, v‘th
, . 2k Tlt 1/2
where Vth = ( T ) (16)
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In a similar way, the flux is given by the difference between the
unperturbed flux nV, and the integral of the distribution function,
times the velocity of the particle, over the forbidden interval:

v
2
W=n¥V_ - 1 @ +v) ""“V"'th’2 v, a7
W= "% —I17 otV e U {
V.7
th
1
- no\;'th B -{v,/v, )2 ={v. /v, )2
—HVO“EWZ— -B— [e 2’ "th - lth] (18)

Along the axis of the wake, y = x tan o« or A = 0, we get the roots
v andvzfran (19)

1
chos o X (r2 - R2)1/2 R sin a
v, 5 5 5 (19)
r® sin“a - R
and in the case r >> R we can expand (19) and get:
= RVO
r sin o
RV
+ 2 i.e. (20)
— rsina
2 Rvo
Y sin a

From (18) we see that the average velocity is =\"fo, as it should be.
From (15) we get for the density:
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n 2 2 v
~—=1-———7— -X -1 - o R
Dy 1:1 2 e d =1 - erf (vth r sin a) (21)

(22)

so that the wake of the moon dies as R/r and is proportional to the ratio
of the solar wind velocity and the thermal velocity of the ions along
the magnetic field lines. As mentioned earlier, the case a = 0 is a
special one in which this treatment breaks down.

The solar wind parameters in (21) are V, T, , and a. We can take

; Il
into account the relation between o and"Vo, given by the consideration
that the streamlines in the solar wind have to coincide with the magnetic

field lines, in a frame corotating with the sun:

v

. é .
or sin a = (23)
(ch + V¢2) 1/2

§
oles

Since the azimuthal velocity of the solar wind at 1 a.u. amounts only
to a few km/sec, (Weber and Davis, 1967; Modisette, 1967; Alfonso-Faus,

1968) , we can take V¢ as the angular rotation velocity of the sun

times one a.u., i.e. about 430 km/sec. Thus, equation (21) can be

expressed in terms of T, and Vo alone, by means of (16) and (23):

i
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M o ,1/2 (v o +V ¢)l/2
2kT” V¢

KW

n
= (24)
o

In Figure 3 we have a plot of the distance r at which n/no = 0.1

and :n/nO = 0.5, in terms of Vo and ‘1‘“ , according to (24). Taking
Cand
T” = 10

n/no = 0.5 at r = 22.5 R; thus, all the surfaces of constant density < 0.5

©
Kandvo=350m/sec,wegetn/no=0,,latr=9Rand

are located inside the cold plasma wake and within a distance of
22.5 R from the moon, while the ones with constant density < 0.1 are
w1th1n a distance of 9 R from the moon. Since the average velocity
is SVO, the arguments also apply for the surfaces of constant flux.
We will later show that these distances are significantly shortened
by electron pressure.

5. Inclination of the Wake

Though we have been referring to the "axis" of the wake, having
in mind the cylinder of the cold plasma approach, it is clear that the
presence of the magnetic field introduces an asymmetry, except for the
particular cases o = 0° and o = 90°, so that the curves of constant
density will not peak at the "axis" A = 0 (Figure 7). We now want to
find the line formed by the points at which the curves of constant
density peak, i.e. the line defined by the condition:

a
F)= 0 (25)

i

n congtant

This line gives us a measure of the inclination of the wake. The
relation between r and A is given implicitly by (15), with n = constant,

where the limits of integration are functions of r and A given in (14).
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Thus, differentiating (15) with respect to A we get the equation for
dr/dx :

PV2 PV2
2| ot gy L EL | o)y =0 (26
ax L D 3T !

Jvl dvl

and taking into account (25) we get the equation for the so-defined axis:

8V2
A

L2

2 2 2
e =e vy" - vy )/vth (27)
A

5]

so that using (14) and expanding in terms of R/r we get the
approximation to (27)

2
2 43RV 3
4 R RS _ o R
1‘*‘;"‘*"—&-*‘0[}'] -EXP(Z 5 2+0[-f] ) (28)

I sin (!Vth

If the exponent in (28) is much less than 1 in absolute value, i.e. if

Vz
1:2 >> 4 l;l R g (29)
sin” a Y ih




15

then we can expand the exponential and obtain:

2
. v
N sin 2a th (30)

7 7

e

Expression (30) is the desired equation for the axis of the wake.
It is seen that it is a second order effect in the ratio of the thermal
to the solar wind velocities; for a = 0 we get a symmetric wake,
A = 0, as expected; the maximum inclination occurs for a = 45° which
is very close to the actual value in the solar wind at 1 a.u.
The range of values of r, for which (30) is a valid expression,
is giwen by condition (29). Substituting (30) into (29) we get for this

range:
4R
tan

T >>

One gets the usual breakdown for o = 0. In the case of the moon, tan a
is of order 1 and therefore (30) is a good approximation for r >> 4R.
The negative sign in (30) means that the wake is inclined toward

the riagnetic field lines; this small effect is given by the angle:

2
g .Sin20 v th
- 2 v 2
o
L]
Taking'r“ =105 Kandvo=350hn/secweget6=@4 degrees.

We have found the equation for the axis of the wake based upon the
family of curves of constant density. We can do a similar treatment

based upon the family of curves of constant flux parallel to ﬁo" The

result is:
, v2
e -3 pSinza th (31)
2 2 2
Yo

Comparing (31) with (30) we see that the line of peaks of constant
fluxes is inclined 50% more than the line of peaks of constant density.
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6. Results and Comparison with Experiments

In Figure 4 one has the orbit of Explorer 35 as it crosses the
boundaries of the wake. The plasma flow is observed to decrease from
the original interplanetary conditions between a and b; between b and ¢
only instrumental noise was recorded and between ¢ and d the plasma:
flow is observed to increase toward the interplanetary conditions.

We see that the gross features of the structure of the wake, obtained
from the treatment of the ion component alone, are in agreement

with the observations reported by Lyon et al., 1967. The additional
effects produced by electron pressure, electric and magnetic fields,

are important per se since they produce cbservable effects, as shown

in the next sections, but they do not alter the general features predicted
by the treatment of the ions alone.

7. Effect of Electron Pressure

The electron pressure bends the ion trajectories toward the interior
of the cylinder. The amount of bending is given by the balance between
the gradients of electron pressure and the inertia of the ions, i.e.

Newton's law:

csin? o o B = _9
sin” o Y nOM T (32)

where r, is the radius of curvature of the ion's trajectory. Measuring

A and X, in units of lunar radii, equation (32) gives the order of

magnitude for r.:

V2

. 2 . o
sin" o *» 2p = noM e (33)

C

and using the equation of state for the electron gas

p=n kT, (34)
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we get the estimate
M V2
r = 2 1
¢ ZkTe sin” o

In Figure 5 we have the sketch of the trajectory of a typical ion and

the relevant geametry to find the distance de at which the ion crosses

the axis of the wake., From the triangle abc:

2 _ 2 _ - 21= -
de-rc (rc 1 2rc 1

and since r, >> 1, we get

. 1/2
de = (2 rc) ’

Taking into account (35), one obtains:

MY
- o ,1/2 1
dg G T, ) ° 8in o

Let us find an estimate of the length for the case of the ions alone:
either fram (22) or by considering that a typical ion bordering the

cylinder has a velocity ;50 plus a thermal component (KT, /M) 172

along
the magnetic field lines; the length of the ion wake can be given
approximately by the distance di covered by the ion in arriving at
the axis of the cylinder: B

di u V0 t/R

R= (e, M2 (sin o) ¢
and eliminating t from the above expressions:

w2

4 = eoyl2 _1
i kT” sin a

In Figure 5 we have the geametry of the cambined effect. Taking into

account that the angles €17 €5 €3

(35)

(36)

(37)

(38)

are small, we proceed to calculate them.
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The angle €17 due to the ion thexmal motion, is given by

1
£, = (39)
1 di
while the angle €qr due to the electron pressure, is given by
d
Emp = ———
2 r,
or using (36) one gets
el = 2
2 de (40)
For the angle 2 €5 We obtain
2 e, = B . de‘d
3 r, T
and using (36) to eliminate r,
T
d e d
e e

where d is the length due to the combined effect.

The distance ef can be expressed in two different ways:
ef = af elmfb (52-»33)

and substituting af, fb from Figure 5, and using i(39), (40) and (41)

we get

2
a 1 d d
— =(d -4d) - + —=—) =12+
di e de d2 dZ

e e
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The above equation gives for d, using (37) and (38)

MV2 T T
_ o ,1/2 1 17 e 1l/2 _
4=l )" sme 7y reg)7 - (42)

As a check, the above expression gives d -+ di when Te—> 0 and 4 » de
when T, 0, as it should be.
Now we can define an effective temperature to take into account

the effect of two electrons on the length of the wake. Identifying (42) to

( MVCZ) )1/2 L
kTeff sin a
one obtains
T T T 1/2 )
;e-f-§=32‘-[1+2§%+(1+4-§ ] (43)

Ty

Hence, a better approximation to the distribution of densities and fluxes
is immediately cbtained by considering the ions to be alone, as done in

the corresponding section, with the effective temperature defined

Tets
in (43). Table I presents charééteristic numerical values for the
effective temperature. If T e/Ti | = 2 then the length of the wake is
shortened by a factor of 2 due to electron pressure.

TABLE I

Effective Temperature of the Ions in Terms of Electron Temperature

Ty Ty
1 2.62
2 4.00
3 5.30
4 6.56
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8. Electric Fields

In order to get the effect of the electrons upon the ions at short
distances from the moon, one has to analyze in detail the structure of
the interaction, i.e. charge separation and electric fields rather than
bulk pressure; thus, the problem now is to solve Poisson's equation
for the two component plasma. Consider the electrons to be in thermal
equilibrium, with a Maxwellian distribution function modified by the
Boltzmann's factor due to the presence of an electric potential ¢.

The density of electrons is given by

n, = n_ exp (ep / k:Te)

Using R( as the unit of distance, and calling
@ = - e¢/kTe

the electric potential satisfies
2
2, . R i, _
Ve = (g) [ n/n -exp (-9)]

2) 1/2

where D is the Debye length (kre/41rnoe . Since D <« RQ , it is

convenient to express the solution of (46) in a power series expansion

2

in terms of (D/RK) The zero orxder solution is:

n

= 1n -2
¢ = n.
i

and the expansion is valid if
n n
o /D2 2 o)
e (ﬁ) v { In 'ﬁ—: ] << 1

ny i

It is seen that the electrons dominate the central part of the wake,
since the curvature of the potential has to change sign in order to

match the other boundary, according to Figure 6.

(44)

(45)

(46)

(47

(48)
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The line termed "limit of n, = ne“ corresponds to the breakdown
of the condition (48) for the validity of the solution ¢ = 1n (n o/ni) .
After a distance of =2.7 radii from the moon, the condition (48) is
satisfied for all values of ), which means that almost no charge separation
occurs, as usual in a plasma. At distances shorter than 2.7 radii charge
separation occurs only at points well inside the wake, where the density
is extremely small. The line termed "limit of plasma state" has been
drawn by locking for the locus of points at which there is only one
particle per Debye sphere. At short distances, fram the back of the
moon, the gradients of the potential are mainly perpendicular to the
axis of the wake, which means that we can express the electric fields as:

3%

E“-a—x-

(49)

in units of ld'e/Re From Figure 6 it is seen that the slope (49)
increases rapidly as the ion penetrates the wake; a typical ion that
enters the wake with the velocity of the bulk plasma ‘70’ and a thermal
component v, parallel to the inagnetic field lines, is falling into a
potential of scme kT e/e. units, which means that its velocity normal
to the wake increases by a factor of same units. Since the effect is
important in determining the width of the boundary, we want to find
the ion trajectories in the presence of the electric potential.

First, let us find an approximate analytical expression for
the density of the ions, in the absence of the potential: the time for
an ion to arrive at a distance r from the moon is t = r/vo; hence,
the thermal component along the magnetic field lines that is necessary

for the ion to penetrate a distance 1 - X into the wake, is given by

l1-2 _ 1=
t sin o r sin o Vo (50)

v o=
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Since the number of ions in the state (50) is proportional to the

Boltzmann's factor, we get finally:

n v 2 o2
ns= —-—2 exXp [ (vi sin o ( T ) ] (51)

Expression (51) is an approximation to the density curves of Figure 6.
It is seen that the constant density curves are given by straight lines.

Fram (47), (49) and (57) we get for the electric field

M V_;_ ?_e_ 1 1-2 (52)
e R T“ Sinza r2

E = -2

We consider the initial conditions along the line A = 1, i.e. the boundary
of the wake in the cold-plasma approximation; along this line, a typical
ion has a bulk velocity \70, plus a thermal component 7 along the magnetic

field lines. The initial conditions are therefore:

v, sin o
= = =1 S __ i

where r  is the initial position on the line A = 1. Since V_ >> Vie
the motion of the ion projected along the i’?o direction is a uniform one.
Along the direction perpendicular to \70 the ion is accelerated by the

electric field (52). Thus, the equations of motion are:

V.t
= 2
r-r°+R
(54)
at? R Ty sin®a 2

To integrate the system (54) we differentiate the first equation:

dr = VO/R dt (55)
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and substituting (55) into the second one we get:

U ! 1 -2
S5 =2

ar T, 2

. 2
sin” o o

i.e. a second order linear differential equation with variable coeffieients.

The solution gives the trajectory of the ion:

v, sin a r
_ i 1 o\ _ m~-1
A= g =T £ 16) - &) +1 (56)
(o] o]
where
T 1/2
_1 1 e 1
m=gz tlg+r2gy —5—) (57)
. 8in a

In order to find the new density, consider two trajectories separated
by a small distance dro along the line A = 1. The separation along
a general line A = constant will be given by dr. The relation between
dro and dr is found by differentiating (56) , considering A = constant.
Under steady state conditions, the flux of ions normal to the element
dro,‘.must be equal to theuflwz mmal to drs

1/2nyv, sina dr_ =n |v

i N (58)

where vy is the component of the velocity of the ion along the A axis.
It is obtained by differentiating (63).

From (58) we get

n r " -
n=22 (D) E"+ncA™ 17T e (59)
[o]

where r and r, are linked by the equation of the trajectory (56).
The density is therefore given by the system (59) and (56), where r,
is just a parameter to be eliminated between the two equations of the

system.
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From (59) it is seen that the curves of constant density are given
by values of r/ro = constant and substituting this constant into (56)
one finds that the curves of. constant density are straight lines, as

in the previous case given in (51), except that now the equation is

v, sin o r
l1-x _ i 1 r ml_ o
i & =T [ SN (60)

where r/r ° is given by (59) for a particular value of the density.
It is seen that the effect of the electrons is to modify the inclination
of the lines of constant density. In the case of no electron pressure

(57) , the inclination of these lines is proportiocnal to:

n, 1/2
[ In (ﬁﬁ') ] (61)

while in the present case (60) it is proportional to:

1 r m1 To.m
ST [(?of) - (;—) ] (62)

Since 1:/ro >1 and m > 1, we can see that there are two different effects
due to electron pressure: for small values of the density, the daminant
terms in (59) and (60) are the first exponentials; this implies that

if 'I‘e increases, m increases, and the constant density lines become
more inclined; for values of the density close to the unperturbed
conditions, the first exponentials in (59) and (60) are of order unity,
which implies that the dominant term in (62) is the factor 1/(2m-1);
thus, if Te increases, this factor decreases and the constant density
lines became less inclined. This imposes that there must be a neutral
line of intermediate density that remains-unaltered by the electron
pressure. This line is obtained by equating (61) and (62). Thus,
above the neutral line the density decreases and below it, i.e. at the

inner part of the wake, the density increases; this is the smoothing
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effect of the electron pressure since it weakens the gradients of density
across the boundary.’
‘9, Surface Currents and Magnetic Field Distortion

In this final section we analyze the distortion of the magnetic
field, due to the presence of surface currents at the boundary of the wake.
This effect arises because of the circling motion of the particles
around the magnetic field lines, and the sudden drop in density across
the boundary of the wake. Since the ions and. electrons. circle the magnetic
field lines. in opposite. senses,. both. components. add up to. the final.
current. = Recent measurements. (Hundhausen et al., 1967) indicate that
T, for the ions.is about.a factor.of 5.or 10 times smaller than the
electron temperature; hence, the effect is mainly due to the electron
thermal motions.

We interpret the mechanism as follows: the ions carry most of the
inertia of the solar wind, and near the back of the moon they give rise
to an empty cylinder, as presented in the cold-plasma approach. The
effect of the thermal motions of the ions and electrons does not modify
this picture in any drastic way; the themmal motions make the drop of
density more or less steep across the boundary, though they are
important in determining the length of the wake. Here we are interested
in analyzing the region close to the back of the moon, where the drop
in density is sharpest, and we will consider the idealized situation
where the drop occurs within a Lammor distance. Once the magnetic
field is distorted, there will be additional effects coming from the
currents that appear because of the drifts, due to the gradients of
the field and its curvature. Nevertheless, we consider that the drop

in density is the primary source for the distortion in the magnetic field.
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Consider the case of the magnetic field lines parallel to the solar
wind velocity; the circling particles will have part of their trajectory
inside the cylindrical cavity and, since the penetration is of the
order of the Lamor's distance which is much smaller than the radius
of the moon, we can consider the resultant currents as a system of
surface currents. The situation is similar to the mechanism of a
sélenoid,

An estimate of the current per unit length is obtained in the
following way: the density in the transition zone is =n°/2, since all
the particles in this region come from the exterior of the cylinder,
and none from the interior. Considering an element of surface in
this region, parallel to the magnetic field lines, each particle crosses
it o e/21: times per second, where w o is the electron cyclotron frequency.
The penetration of the particles into the cylinder is proportional
to the area nLé , oriented in the plane normal to the cylinder,
where Ly is the Lammor radius. Hence, the current per unit length is
given by: |
= —— 7L (63)

Considering typical electrons, we may use the relations w e Le = Vihe L

' 2 .
w, = e Boﬁnc and 1/2 mv thel ™ kTe so that (63) gives

n kT

o e
I = c (64)
L Bc

N b=

We are interested in the functional dependence of the magnetic distortion
on the solar-wind parameters, at the central part of the wake. Thus,
we will take I, as given by (64) times a constant f that may be

determined experimentally by fitting a particular observation:



I =f!2‘- o'e (65)

In Figure 7 we have the situation for a general magnetic field
inclination a. The currents are contained in parallel planes oriented
perpendicularly to the magnetic field lines, ‘so that they are
tangential to an ellipse. We project the currents along the direction
of the axis of the wake, I, ,.and on the plane normal to the axis, I, :

2
. 2. cos™
I,=1I sin”a dy (66)
o (1 - sin% s:i.nzu»)l/2
2 1
I, =I, cos“a dr (67)
T (1 - sin®a sin%y) /2
Now we apply the Biot and Savart law:
> _1 de xh
B=z I h3 (68)

to the two systems of currents (66) and (67). Starting with I, ,
from the | dependence it is seen that this current gives a magnetic field
contribution only along the r axis:

1 dy

4B = = I, &

r ¢ -Lh3
=2 1 cos% i - K(sina) ar
c L h3

where K(sin a) is the complete elliptic.integral of the first kind. Now,

instead of integrating with respect to r, we integrate with respect to 8
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and obtain:

I cosza K(sin a) (cos 81 + cos 62) (69)

B = .

r

Qfé

where By and B, are defined in Figure 8. Here we do not worry about
the final sign, since we know that the distortion is such that both
canponents of the undisturbed magnetic field are increased inside the
wake, due to the absence of the magnetic moment of the plasma particles.
The contribution from I, I is found by applying (68) with de parallel
to the r axis (Figure 8) . From the ¢ dependence it is seen that the
contribution of this component-gives a magnetic field along the -\
direction. Again, we first integrate with respect to the 8 variable,

instead of r, and then integrate with respect to ¢y to obtain:

4 . 2 o cos o
B, = — I sin” a{cos B, + cos B.,) (= +
A C L 1 2’ 'sin a 2 sinza
- o 5 ) (70)
2 sin” .a

In the above expression, the value o = 0 gives B, = 0, as it should.

A
The total increase in the magnitude of the magnetic field is
given by:

AB#—'Brcos.ja-!-B)‘ sin a

and from (69), (70) and (65) one obtains:

e

AB = 2f (cos By + cos 82) F(a) (71)

[8)
BO

where

F(a) = cos3a K(sina) + a sinza + 1/2 sin o cos a—%— (72)

gives the a dependence. From Table II it is seen that F(a) does not
vary much with o; for o« between 40 and 70 degrees, which are typical
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values at 1 a.u., we can take F(o).= .5 and get from (71):

n
okTe

B

AB = £

(cos Bl + cos 82) (73)

where £ is of order unity. Since Explorer 35 orbits at about 2 radii
from the back of the moon, we have cos Sl + cos 82 = 1.9, and using
5

no=10, Bo=5gaxmaand'1‘e = 2 107°K, one obtains

AB = 1,05 £ gama

The above result agrees with the oi;servation fram Explorer 35, as
presented by Colburn et al., 1967, for a value of £ = 1.5. We have
arrived at this figure following a different approach than Colburn

et al. (1967); these authors consider the equation of motion of the
boundary of the cavity, assuming that the drop in plasma pressure is
balanced by the increase in magnetic pressure; we believe that this
treatment does not apply to this case, according to the following
argument: .the physical reason for a cavity at the back of the moon is
the inertia of the ions, i.e. the fact that their bulk velocity is much
higher than their thermal velocity, as seen in the corresponding section
of this work. At the boundary, any gradient of pressure will try to
modify the inertia of the ions, and the equilibrium should be a
dynamical one, not a static one. The surface currents are what they
turn out to be because of the interaction of the solar wind with the
moon, but they do not play an important role in the formation of the
cavity. Their effect on the magnetic field inside the wake is to increase
it by an amount given by (73); furthermore, since the "solenoid"

is of finite length, the magnetic field outside the cavity, due to the
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surface currents, should have an opposite sign compared with the magnetic
field inside it; hence, one expects a decrease in the field just
outside the boundary, as reported by Colburn et al., (1967).

Recently Ness et al., (1968) have presented the results fram an
approximate numerical computation by Whang (1968) valid in the plane
of symmetry only, and including the drift currents due to the curvature
and gradient of the magnetic field. They express the feeling that
these currents produce a small effect compared with the magnetization
currents, which agrees with the approach we have taken here. Hence,
it is not suprising" that our results agree, for the inner part of the
wake. For the external part, the theoretical results of Whang (1968)
are not in agreement with the observations. Ness et al., (1968) suggest
that perhaps-higher order iterations are-the answer to the problem. An
alternative point of view is to postulate the existence of a weak
intrinsic magnetic field in the moon, strongly distorted by the solar
wind that would project the external parts of the field toward the boundary
of the cavity. Future measurements of the magnetic field at the surface

of the moon will hopefully close the subject.
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TABLE 1T

Influence of the Inclination of the Field

Upon the Magnetic Distortion

o in degrees F(a)
0 1,571
10 .815
20 .761
30 .657
40 .554
50 .489
60 .415
70 .550
80 .667

920 . 185
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Figure Captions
Velocity components of an ion,

Relative position of the cuts in the Maxwellian distribution

function for the ions.,

Length of the curves of constant density 0.1 and 0.5 in
termg of V o and Tye The numerical values of T, are high
in order to allow for the effective temperature defined

in the text,
Orbit of Explorer 35,

Typical trajectories of a "hot" ion with and without electron

pressure,
Electric potential in the wake,

Projection of the system of currents into a circular and

an axial system,

Circular and axial system of currents.
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Figure 5

ab=d,
ad=d;
ae=d
af = ge=d
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